
    

 

  

 

 

A Portfolio of Case Studies using the 

Mungo and StMungo Protocol 

Typechecking Toolchain 

Caitlin Norah MacFadyen 
 

 

 

 

School of Computing Science 

Sir Alwyn Williams Building 

University of Glasgow 

G12 8RZ 

 

 

A dissertation presented in part fulfillment of the requirements 

of the Degree of Master of Science at the University of Glasgow 

Date of submission: 05/09/2019 

 



    

 

Abstract 
 

Modern computing relies heavily on the use of communication to build large, 

complex distributed and concurrent systems. Developers creating these systems 

must ensure that their programs correctly follow the appropriate communication 

protocols in order to function properly. The incorporation of protocol typechecking 

tools into object-oriented programming languages has seen a wealth of research in 

recent years; one such example being the Scribble-StMungo-Mungo toolchain. It 

utilizes the theory of session types and typestate to provide static typechecking, 

helping programmers to build robust, communication-safe systems. Scribble is a 

language that can be used to represent the structure of multiparty communication 

protocols and project local protocols onto each participant. StMungo uses Scribble 

local protocols to generate typestate specifications and a corresponding Java API. 

Mungo statically typechecks any code that follows a typestate specification to 

ensure it is being followed correctly. This project serves as a simple, practical 

introduction to the Scribble-StMungo-Mungo toolchain and the theory of session 

types on which it is based. The project contributes to the Mungo website by 

providing a portfolio of three simple protocol examples–Travel Agent, Bookstore 

and Adder–which do not require an in-depth understanding of real internet 

protocols. Each example starts with a Scribble global protocol and describes the 

complete toolchain workflow, plus a video walkthrough of the step-by-step use of 

the tools. The portfolio can be used as a teaching tool that will benefit anyone 

wishing to learn how to use these typechecking tools and understand the theories 

they are based on.  

 

 

  



    

 

Education Use Consent 

I hereby give my permission for this project to be shown to other University of 

Glasgow students and to be distributed in an electronic form.   

 

Name:  Caitlin Norah MacFadyen  Signature:  
 
  



    

 

Acknowledgements 

 

 

I would like to thank my supervisor Dr Ornela Dardha for her amazing support 

and guidance during the course of this project. I was very interested to learn 

more about session types and typechecking, and Ornela’s help was really 

valuable when I had any concerns or confusion. I’m very glad I got the chance to 

work on this project–it was challenging but thoroughly enjoyable, inspiring and 

fascinating! 

  



    

 

Contents 

 

Chapter 1 Introduction .......................................................................... 1 

Chapter 2 Background ........................................................................... 2 

2.1 Session Types ..................................................................................................................... 2 

2.2 Scribble ................................................................................................................................. 3 

2.3 StMungo ................................................................................................................................ 4 

2.4 Mungo .................................................................................................................................... 5 

2.5 Analysis, Tools and Techniques ................................................................................... 6 

Chapter 3 Project Implementation ..................................................... 7 

3.1 Using the Toolchain .......................................................................................................... 7 

3.2 Travel Agent Example ..................................................................................................... 8 

3.3 Bookstore Example ........................................................................................................11 

3.4 Adder Example .................................................................................................................12 

3.5 Challenges ..........................................................................................................................15 

Chapter 4 Related and Future Work................................................. 18 

Chapter 5 Conclusions ......................................................................... 19 

Bibliography .............................................................................................. 20 

Appendix A – Portfolio Setup Instructions ......................................... 23 



1 

 

Chapter 1 Introduction 
 

Communication is a key concept in modern software development. Systems are 

becoming increasingly more reliant on communication-based programming, from 

the increase in complexity and scale of concurrent and distributed systems to the 

use of multithreading and multi-core processing [1]. Protocols are fundamental to 

these communications–they describe the way in which participants must 

communicate with each other [2]. 

Traditionally, programming languages have been built upon the 

importance of correctly implementing data types. High-level programming 

languages have long provided support for typechecking, both static and dynamic, 

to enforce type-safety and hence minimise bugs produced by violation of data type 

definitions. However, this support does not currently extend to communication-

based programming in mainstream languages, where correct following of protocols 

is essential for creating error-free systems. Thus, there is a pressing need for a 

standardised method of safely and correctly programming communications [1]. 

The idea of using typechecking techniques to improve communication-based 

programming has seen a growth of interest and led to significant research in recent 

years. The theory of session types is at the heart of this idea: they provide formal 

descriptions of protocols, describing the order of messages that must be sent and 

received by communicating participants, along with the data types associated with 

these messages [3]. Session types can hence be incorporated into a programming 

language’s type system to offer programmers a method of communication protocol 

typechecking [1].  

 Two such tools that have been developed at the University of Glasgow based 

on the theory of session types are Mungo and StMungo. They form a toolchain that 

provides static protocol typechecking in Java, with the feature of incorporating 

multiparty session types [1, 4, 5]. Mungo implements the notion of typestate [6] to 

allow the association of classes with their corresponding typestate specifications 

using the @Typestate annotation. Typestate specifications describe the permitted 

sequence of send and receive methods on a given endpoint and can be simply 

viewed as state machines. Mungo can be used to separately typecheck any code 

which instantiates a typestate-following class, ensuring that its methods are called 

in a valid sequence. StMungo takes local protocols, produced by Scribble endpoint 

projections [2], and generates a suitable typestate specification for each local 

protocol. It also generates a skeletal Java API which provides an implementation 

of each endpoint in the communication [4]. 

The aim of this project is to present a portfolio of simple examples using the 

Scribble protocol language with the StMungo and Mungo typechecking toolchain. 

The portfolio shows how the toolchain ensures valid protocol adherence with 

implementations in Java. The examples used in this project have not previously 

been implemented using the current versions of the tools. They provide simple, 

easy-to-follow protocol implementations without the need for an in-depth 

knowledge of real-world internet protocols.  

The concepts of session types and typestate checking can be daunting to 

those unfamiliar with them, so the portfolio aims to provide a simple introduction 

using three examples: Adder, Bookstore and Travel Agent. The concepts will first 

be explained in Chapter 2, where the Scribble, StMungo and Mungo tools will also 

be introduced. The production of the portfolio is discussed in Chapter 3, explaining 

in detail how each example is implemented. For each example there is an 

introduction to the protocol and an explanation of the toolchain usage, plus a full 

video walkthrough which can be found on the Mungo website [7] and YouTube [8, 



2 

 

9, 10]. Chapter 4 describes further work that could provide a more in-depth, 

practical example to include in the portfolio, and Chapter 5 contains concluding 

remarks. 

 

 

Chapter 2 Background 

2.1 Session Types 

First introduced by Honda et al [11, 12], session types were developed for process 

calculi as a way of formalising the structure of communications. The collection of 

communications that form a program were introduced as sessions; the interactions 

in each session occur over a channel [11]. Session types define the sequences of 

send and receive actions that specify a communication over a channel, as well as 

the data types associated with each message and their direction. They also 

incorporate choices, both internal and external, that allow communications to 

proceed differently based on the selections made by particular participants [3]. 

These will be discussed further in Sections 2.2 and 3 in the context of the Scribble 

language and within the portfolio of examples.  

There has been significant research in recent years on applying session 

types to mainstream programming languages in order to improve the quality, 

safety, efficiency and production cost of communication-based software. It is the 

focus of the ABCD project [13], running since 2013, that has given rise to many 

publications and resources including the Mungo and StMungo tools. Work by Gay 

et al. [14] in 2010 introduced the idea of using typestate to incorporate session types 

into object-oriented programming. Their work utilised the features of object-

orientation to apply modular session types to both classes and individual 

communication channels, adding to the type system to allow protocol typechecking 

of these session-typed objects.  

In order to understand both how typestate checking works, and the 

motivation for incorporating it into mainstream programming languages, the idea 

of typestate itself must be explored first. First introduced by Strom and Yemeni in 

1986 [6], typestate is a concept built upon the notion of types in programming 

languages. It adds context to types, using pre- and post-conditions around methods 

to specify the current state of the object. It defines sequences of method calls that 

are allowed on objects when they are in a particular state, rather than the list of 

permitted methods being the same at any point during compile-time or runtime as 

with standard types. This has obvious benefits for communication-based programs, 

where the sequence, direction and type of messages are all key to their successful 

execution [1].  

The Mungo and StMungo tools further build on previous research on 

session types and typestate in object-oriented languages, including Gay et al’s work 

[14]. The toolchain improves the previous work, most notably by incorporating the 

use of multiparty session types [5, 15], allowing more complex communications to 

be represented. Initially, research in the field focused on binary session types that 

relied on the concept of duality–where the send methods of the first participant 

must match the receive methods of the second, and vice versa [3]. Multiparty 

session types [15] extend the traditional notion of binary session types, which 

limited the modelling of communications to those that only involved two 

participants. In 2008, Honda, Yoshida and Carbone [15] applied the theory of 

multiparty session types to the pi-calculus. They introduced the idea of formalising 



3 

 

global types: representations of multiparty communication protocols that take into 

account interleaving behaviours of each participant in the communication. 

Participants each own a local endpoint in the session channel; these endpoints can 

be projected from global types (see section 2.2). In essence, global types describe 

the communication between multiple endpoints as a whole, showing the order and 

type of interactions between all parties. This insight is incorporated into session 

type tools to aid programmers in several ways, for example to achieve 

communication safety or to eliminate deadlocks and other errors that arise in 

concurrent programming [15, 16]. 

2.2 Scribble 

Multiparty session types form the basis of the Scribble protocol language [18]. 

Inspired by Kohei Honda’s work at the (now closed) W3C Web Services 

Choreography Description Working Group [17], the development of Scribble 

sought to simplify the representation of application-level protocols [2]. Today, the 

Scribble tool provides several services to programmers to support the development 

of communicating systems. It serves as a human-readable language to describe 

global and local protocols that represent multiparty communications. In contrast 

to global protocols that describe communications from a global viewpoint, local 

protocols describe communications from the viewpoint of a single participant, 

showing how it interacts with the rest of the party [4]. Scribble’s validation service 

checks the well-formedness and validity of global protocols. The tool also performs 

endpoint projection, as discussed in 2.1, that derives a local version of the global 

protocol for each role in the communication based on the theory of multiparty 

session types. In addition, Scribble provides endpoint API generation for both Java 

and Scala, plus endpoint monitoring to guarantee correct behaviour of endpoint 

implementations [2, 18]. This project will demonstrate the use of validation and 

endpoint projection with the Scribble-Java tool, which can be cloned or downloaded 

from the GitHub repository at [19]. To introduce the syntax of Scribble protocols 

and briefly introduce endpoint projection, a simple “Hello World” example [19] is 

provided below:    

  global protocol Hello(role C, role S) { 

 Hello(String) from C to S; 

} 

Figure 1.1 – simple global protocol in Scribble 

 

local protocol Hello_C(self C, role S) { 

 Hello(String) to S; 

} 

Figure 1.2 – Endpoint projection of role C 

 

local protocol Hello_S(role C, self S) { 

 Hello(String) from C; 

} 

Figure 1.3 – Endpoint projection of role S 

 



4 

 

The global protocol Hello in Figure 1.1 represents the global viewpoint of this 

simple two-party communication. The role declaration list (role C, role S) 

specifies each participant that can be projected to an endpoint, represented by a 

local protocol. After endpoint projection, the Hello_C local protocol in Figure 1.2 

represents a client which simply sends a hello message to the server S, represented 

by the Hello_S local protocol in Figure 1.3, whom receives this message. The self 

C and self S keywords denote that the local endpoints are C and S respectively. 

The body of the protocol contains the message signatures for messages that must 

be sent and received – in this case simply Hello(String). This includes the 

message operator Hello and the payload type (String). Payload type 

declarations must also be included to specify the host language [20], in this case 

Java; these can be seen in the project videos at [7, 8, 9, 10].  

 As Scribble protocols become more complex, we see the introduction of ideas 

like internal and external choice and recursive protocols. The choice statement 

choice at r { ... } or { ... } is found at branch points at which the 

protocol can proceed in more than one direction. Here the choice subject, who 

makes the choice, is r. The choice in this example would be internal to r but 

external to the other roles in the communication. All three examples in the 

portfolio will utilise the choice feature. Recursive protocols, as represented by rec 

X in the Adder example in section 3.4, describe protocols that may loop back to a 

certain state based on the outcome of a choice [20]. Further Scribble features like 

explicit and auxiliary global protocols are available, but these are beyond the scope 

of the project. The Scribble language can be used in conjunction with Mungo and 

StMungo to take advantage of the benefits of protocol typechecking and build 

robust, communication-safe implementations of protocols.  

2.3 StMungo 

Once local protocols have been derived by Scribble endpoint projection, the 

StMungo tool [1, 4, 5] comes into play. StMungo, short for Scribble-to-Mungo, is 

so-called because it generates protocol implementation code that can be 

typechecked by Mungo. It takes Scribble local protocols and translates them into 

typestate specifications. It also provides a skeletal Java API for the 

implementation of each role in the protocol. StMungo works by abstracting each 

role in a communication into separate Java classes, each of which follows the 

associated typestate. These classes–together with the typestate specifications and 

main classes for instantiating role objects–can form the foundations of error-free 

communication systems. StMungo is a unique tool in that it offers the first 

integration of Scribble protocols and typestate specifications into an object-

oriented language [4].  

Typestate specifications, which define communication protocols as state 

machines, are given in a Java-like syntax. They are provided separately in 

.protocol files, like CProtocol.protocol and SProtocol.protocol in Figures 2.1 and 2.2 

below: 

typestate CProtocol { 

 State0 = { 

  void send_HelloStringToS(String): end 

 } 

} 

Figure 2.1 – CProtocol.protocol Typestate specification derived for role C 



5 

 

typestate SProtocol { 

 State0 = { 

  String receive_HelloStringFromC(): end 

 } 

} 

Figure 2.2 – SProtocol.protocol Typestate specification derived for role S 

The above typestate specifications are produced by running StMungo on the 

Scribble local protocols in Figures 1.2 and 1.3. Typestate specifications consist of 

one or more numbered states, which represent the state that the channel object is 

currently in. When methods are called on objects, it is likely that their typestate 

will change, proceeding to the next available state [5]. Both of these protocols 

contain only State0 and end. This means that any object following the 

CProtocol typestate simply calls the send_HelloStringToS(String) method 

and the protocol proceeds to the end state, where it terminates. Any object 

following the SProtocol typestate first connects to the CProtocol-following 

object, then calls the receive_HelloStringFromC() method and terminates 

with the end state. More complex examples using multiparty communications will 

be discussed in Chapter 3. 

StMungo produces a Role class for each local endpoint involved in the 

communication, which represents channel objects that follow the given typestate 

specification. In the above example, StMungo would produce CRole and SRole 

Java classes. Each Role class contains a basic implementation of each method 

specified by each state in the typestate, plus a constructor that contains Socket-

based connection code. When the Role class is instantiated, the object connects to 

other Role objects participating in the session via Java Sockets [5]. 

StMungo also produces a main class to instantiate each role, for example 

CMain and SMain for the above example. These main classes create the Role object 

and use it to invoke each of the methods in the associated typestate in order, so 

they can then be separately typechecked by Mungo. The API produced by StMungo 

provides only a basic implementation of a communication, so it can be built upon 

based on the programmer’s view for the final implementation. They can add extra 

logic to suit their requirements, as long as the typestate is not violated. The API 

itself does not need to be used, the typestate specifications alone can be utilised to 

build a separate implementation. The typestates themselves can also be altered, 

for example by naming states, to better suit the programmer’s needs [4]. The 

StMungo tool is developed and maintained by Dr. Ornela Dardha. It can be 

downloaded from the Bitbucket repository [21]. 

2.4 Mungo 

Mungo is a front-end tool for Java that performs static typestate checking, based 

on the idea of channel objects following typestate specifications [14]. It adds a 

Typestate definition to Java, which can be used alongside Java’s standard type 

system to extend its coverage to include typestate checking. While typestate was 

traditionally introduced based on pre- and post-conditions on methods [6], Mungo’s 

typestate checking technique diverges from this notion by defining each typestate 

in a separate file. This allows separate typechecking of each typestate-following 

object, which guarantees communication safety if every role adheres to its 

typestate [5]. A typestate specification is associated with a Java class–e.g. CRole–

via the @Typestate annotation: 



6 

 

@Typestate("CProtocol") 

public class CRole { … } 

Here, the CProtocol typestate is adhered to by the class CRole, thus the class 

must implement the methods defined by each state [4]. The Mungo tool uses the 

JastAdd Reference Attribute Grammar meta-compiler suite to implement parsers 

for both the Mungo typechecker and the typestate specification language [1]. The 

Mungo typechecker can be run on any code which instantiates a channel object 

that follows a typestate specification. When it is run, an inferred typestate is 

produced, and the sequences of method calls on typestate-following objects are 

constructed and checked to ensure they follow the minimum inferred typestate. 

Aliasing can lead to inconsistencies in typestate, so Mungo controls this through 

linear use of objects [5]. The typestate inference system was formalised as a core 

object-oriented calculus in [5], however, this formalisation will not be covered in 

the project. If no errors are reported by Mungo, the code can be compiled and run 

as standard in Java 1.8 [4].   

Mungo completes the session type toolchain by providing typestate 

checking for channel objects. It should be run once the final implementation of the 

communication has been completed, i.e., once Scribble and StMungo have been 

used and any appropriate alterations have been made to the API. Mungo 

typechecking currently covers a subset of Java. Coverage for generics, inheritance, 

exceptions and other features is not yet supported and require further work to be 

included in future releases [1]. Mungo was developed by Dr Dimitrios Kouzapas, 

and it is maintained by the ABCD team at University of Glasgow [13]. There is an 

older and a newer version of the Mungo tool, which run on different versions of 

Java: 1.4 and 1.8, respectively. Some work was required at the beginning of the 

project in order to cope with and deal with these differences, which will be 

discussed further in section 3.5. The new version of the tool (version 1.1) can be 

downloaded from the Mungo website [7]. 

2.5 Analysis, Tools and Techniques 

As discussed in the previous chapters, the incorporation of typestate checking into 

mainstream programming languages could prove essential for the progression of 

modern computing [13]. This would mean that more programmers would need to 

gain a working knowledge of the theory of session types and the typechecking tools 

based on it. The aim of this project is to provide a portfolio of cases studies for the 

Mungo and StMungo tools that serves as a practical introduction to the subject, 

contributing to the Mungo website by providing step-by-step videos of the toolchain 

usage. The Background section in Chapter 2 has provided a comprehensive outline 

of the underlying concepts. Chapter 3 will now discuss the implementation of three 

examples using Scribble, StMungo and Mungo, namely Travel Agent, Bookstore 

and Adder. The first two provide examples of multiparty communications, the 

third demonstrates how a recursive protocol is dealt with. The general workflow of 

using the toolchain will be introduced, including the files that each tool runs on 

and the files produced. Each example will then be discussed in more depth and the 

chapter will conclude with the challenges that were faced during implementation. 

The following versions of each tool were used during the implementation of the 

project: 

 

• Scribble-Java version 0.4, cloned from [19] 

• StMungo version 1.1, cloned from [21] 

https://github.com/scribble/scribble-java


7 

 

• Mungo version 1.1, cloned from [22] 

• Java version 1.8.0_211, downloaded from [23] – see section 3.5 

• Cygwin64 Terminal version 3.0.7, downloaded from [24] – see section 3.5 

 

In order to produce the video walkthroughs of the toolchain usage, the screen-

capturing software Flashback Express Recorder was used. Version 5.36 was 

downloaded from [25]. To edit and add captions to the video, I used the free, open-

source video editor OpenShot version 2.4.4, which was downloaded from [26]. 

 

 

Chapter 3 Project Implementation 

3.1 Using the Toolchain 

The general workflow of the Scribble-StMungo-Mungo toolchain is as follows: 

 

1. Start by using the Scribble tool on Scribble global protocol (.scr) files for 

validation and endpoint projection. The Scribble-Java command line tool 

was used in the project. 

a. For each given example there is one global protocol, which projects 

to either two or three local protocols depending on how many 

participants there are.  

b. Endpoint projection derives local protocols that can be saved in 

separate Scribble files. 

2. Once the local protocol files have been saved, run stmungo.jar on all local 

protocol (.scr) files. 

a. The local protocol module can be altered to specify where to place 

the files produced by StMungo, e.g. module portfolio_Adder_C 

will create a ‘portfolio’ package containing an ‘Adder’ folder in which 

the files will be saved. 

3. Add logic to flesh out the skeleton socket-based Java API, or use typestate 

specification to create alternative API. 

4. Run mungo.jar (using Java 1.8) on any Java code that instantiates a class 

that follows a typestate specification. Mungo provides useful error 

reporting that identifies the cause of any typestate violation. 

5. If Mungo does not report any errors, compile and run the code as normal. 

 

The following alterations were made in each example. The local protocol modules 

were altered in order to save files into a portfolio package. After running StMungo, 

the Sockets and ServerSockets in each produced Java file had to be properly 

configured to allow communication between each party, i.e., by changing port 

numbers appropriately. To achieve a complete run-through of the communications, 

some of the methods had to be altered, Typestate had to be imported from 

Mungo.lib in Role classes, and extra dialog was added to make the communications 

easier to follow. The programs in each communication were run on separate 

terminals to represent each of the parties involved in the communication. The 

following sections will discuss the individual implementations and workflow of 

each example in the portfolio. Appendix A provides instructions on how to set up 

and run the portfolio examples using the tools. 



8 

 

3.2 Travel Agent Example 

The first example in the portfolio is that of the travel agent. This example models 

a three-party communication using a scenario where a university researcher 

wishes to organise travel for research purposes. The three participants involved in 

the example are the Researcher (R) who wishes to travel, the Agent (A) who makes 

the bookings, and the Finance department (F) who controls the university’s budget. 

The communication begins when the Researcher requests a quote from the Agent, 

who sends it back. The Researcher then sends the quote to Finance who must 

approve or refuse travel. If Finance approves, they must send an approval code to 

both the Agent and the Researcher; the Agent then sends a ticket String to the 

Researcher and an invoice code back to Finance. When the Researcher’s ticket has 

been received, their role in the communication is complete. Finally, when Finance 

receives the invoice code, they can send back the payment to the Agent and the 

communication is complete. Conversely, if Finance refuses the travel request, they 

simply send a String explaining the refusal to the Researcher and the Agent.  

 In order to implement this example, I started by reviewing the following 

BuyTicket Scribble global protocol, found at [1]: 

global protocol BuyTicket(role R, role A, role F) { 

 request(String) from R to A; 

 quote(int) from A to R; 

 check(int) from R to F; 

 choice at F {  

  approve(int) from F to R; 

  approve(int) from F to A; 

  ticket(String) from A to R; 

  invoice(int) from A to F; 

  payment(int) from F to A; 

 } or { 

  refuse(String) from F to R; 

  refuse(String) from F to A; 

 } 

} 

Figure 3.1 – BuyTicket (Travel Agent) global protocol 

 

 

The local protocol files had already been defined at the StMungo Bitbucket 

repository [21], which were used initially, but the final example begins with the 

Scribble global protocol as seen in Figure 3.1 above, and in the video [7, 10]. 

I began this example by running StMungo on the local protocols. I did run into 

some difficulties during this process which became apparent when trying to 

implement the logic in the resulting Java API; this will be discussed in detail in 

Section 3.5. Once the appropriate changes to the global protocol were made, I was 

able to successfully run StMungo on the three Scribble local protocol files – travel-

agent_Agent.scr, travel-agent_Research.scr and travel-agent_Finance.scr. The 

local protocol for the Finance role, as produced by StMungo, is given below in 

Figure 3.2. 

 

 

 

 

 

 



9 

 

 

local protocol BuyTicket_F(role R, role A, self F) { 

 check(int) from R; 

 choice at F { 

  approve(int) to R; 

  approve(int) to A; 

  invoice(int) from A; 

  payment(int) to A; 

 } or { 

  refuse(String) to R; 

  refuse(String) to A; 

 } 

} 

Figure 3.2 – travel-agent_Finance.scr local protocol 

 

The following skeleton files were produced as a result of running StMungo on the 

above file: 

• FProtocol.protocol 

• FRole.java 

• FMain.java 

• Choice1.java 

 

The typestate specification in FProtocol.protocol was defined as follows: 

typestate FProtocol { 

 State0 = { 

  int receive_checkintFromR(): State1 

 } 

 State1 = { 

  void send_APPROVEToR(): State2, 

  void send_REFUSEToR(): State6 

 } 

 State2 = { 

  void send_approveintToR(int): State3 

 } 

 State3 = { 

  void send_approveintToA(int): State4 

 } 

 State4 = { 

  int receive_invoiceintFromA(): State5 

 } 

 State5 = { 

  void send_paymentintToA(int): end 

 } 

 State6 = { 

  void send_refuseStringToR(String): State7 

 } 

 State7 = { 

  void send_refuseStringToA(String): end 

 } 

} 

Figure 3.3 – Fprotocol.protocol typestate specification 

 

As seen in Figures 3.2 and 3.3 above, StMungo converts each message in the local 

protocol to a method in the typestate specification, incorporating the return type 

and payload type. Each line also defines which state the associated object 

proceeds to after it returns from a method [5]. The subsequent state can differ 

depending on the result of a choice, as seen at State1, which represents an 



10 

 

internal choice at F. Here, the object will either proceed to State2 if APPROVE is 

chosen, or State6 if REFUSE is chosen. These choices are represented as 

enumerated types in Choice1.java, produced by StMungo. For each local protocol, 

StMungo produces a Role class, a Main class and a Protocol typestate 

specification. The Role classes are those which follow the typestate specification. 

These classes make use of the @Typestate annotation to denote the protocol 

that should be followed by any class that instantiates a Role object. For example, 

any class that instantiates an FRole object must make sure it follows the 

FProtocol typestate specification, calling the methods in the correct sequence in 

FMain. This file can then be typechecked by Mungo:  

 

Figure 3.4 – Running Mungo on Travel agent main classes 

 

Figure 3.4 shows how Mungo is run in the Cygwin64 terminal: since it displays 

no error messages, it means there are no typestate violations. The use of the -pi 

flag is also shown, which displays the inferred types that the Mungo typechecker 

uses to check against the method calls in the FRole object’s lifetime [1]. As seen 

in the video walkthrough [7, 10], when a method call is removed from FMain, 

Mungo reports a semantic error that describes a typestate mismatch, because the 

expected order of method calls is incorrect. When the method call is replaced, the 

error is resolved. 



11 

 

3.3 Bookstore Example 

The Bookstore example is similar to the Travel Agent in that it involves a 

multiparty communication between three participants. The Bookstore global 

protocol in Figure 4.1 was adapted from the TwoBuyer example in the Scribble-

Java GitHub repository [19].  

 
global protocol Bookstore(role Seller, role Buyer2, role Buyer1) { 

 book(String) from Buyer1 to Seller; 

 book(int) from Seller to Buyer1; 

 quote(int) from Buyer1 to Buyer2; 

 choice at Buyer2 { 

  agree(String) from Buyer2 to Buyer1; 

  agree(String) from Buyer2 to Seller; 

  transfer(int) from Buyer1 to Seller; 

  transfer(int) from Buyer2 to Seller; 

 } or { 

  quit(String) from Buyer2 to Buyer1; 

  quit(String) from Buyer2 to Seller; 

 } 

} 

Figure 4.1 – Bookstore.scr global protocol 

 

As with the Travel Agent, the Scribble local protocol files for Buyer1, Buyer2 and 

Seller can be found at the StMungo Bitbucket repository [21]. In this example, 

there is the Seller, the first buyer (Buyer1) and the second buyer (Buyer2). The 

scenario is that Buyer1 sends the title of the book they wish to purchase to the 

Seller, who returns its price. Buyer1 cannot afford the book alone, so sends a quote 

to Buyer2 who will potentially pay a portion of the cost. There is a choice in 

Buyer2’s protocol specification as they decide whether to agree to send the quoted 

payment to the Seller. If Buyer2 agrees, they send a String confirming their 

agreement to both other participants. Then Buyer1 sends their part-payment to 

the Seller, and Buyer2 follows with the rest of the payment. If they quit, a quit 

message is sent to Buyer1 and Seller respectively. 

local protocol Bookstore_Buyer1(role Seller, role Buyer2, self 

Buyer1) { 

    book(String) to Seller; 

    book(int) from Seller; 

    quote(int) to Buyer2; 

    choice at Buyer2 { 

        agree(String) from Buyer2; 

        transfer(int) to Seller; 

    } or { 

        quit(String) from Buyer2; 

    } 

}  

Figure 4.2 – Bookstore_Buyer1.scr local protocol 

 

Figure 4.2 above demonstrates how the external choice at Buyer2’s local protocol 

is seen in Buyer1’s local protocol. While the choice must be made by Buyer2, it is 

also present as an external choice within the local protocols of Seller and Buyer1. 

This is because the progression of all three parties depends on the result of 

Buyer2’s choice, namely Choice1.AGREE or Choice1.QUIT.  



12 

 

In Figure 4.3 below, we see the command used to run StMungo on Buyer1’s local 

protocol. The derived typestate specification is seen along with the directory in 

which all the produced files are saved. Note that here the files are saved in the 

‘newdemos’ directory; the final versions were moved to the ‘portfolio’ directory by 

changing the module specification in the local protocol. 

Figure 4.3 – StMungo running on Bookstore_Buyer1.scr 

 

The complete code produced by StMungo is seen in the video, along with a full 

demonstration of the typechecking and running of the final programs [7, 9]. 

3.4 Adder Example 

The third and final example in the portfolio is the recursive Adder example, which 

involves two participants: C and S. The body of the protocol essentially involves 

the client, C, sending two integers to the server, S, which adds the two numbers 

and returns the result to C. This example, however, also shows the use of recursive 

protocols and how they are handled by Scribble and StMungo. The Adder global 

protocol is defined below in Figure 5.1. 

 

 



13 

 

global protocol Adder(role C, role S) { 

 rec X { 

  choice at C { 

   Add(int) from C to S; 

   Add(int) from C to S; 

   Res(int) from S to C; 

   continue X; 

  } or { 

   Bye() from C to S; 

  } 

 } 

} 

Figure 5.1 – Adder.scr global protocol 

Recursion is defined by the rec X {… continue X} statement around the body 

of the protocol. The choice at role C requires the user to choose between the 

enumerations ADD and BYE. If ADD is chosen, the two integers are sent to S and 

the result of the addition is sent back. When continue X is reached, the protocol 

loops back to rec X and asks the user to choose again. This continues indefinitely 

until BYE is chosen, whereupon the Bye() method is called and the protocol 

terminates. The Adder global protocol can be used by Scribble as follows: 

Figure 5.2 – Scribble validation and endpoint projection on Adder.scr 



14 

 

The global protocol is validated by Scribble as given in the first command in Figure 

5.2. The endpoint projection is then carried out using the -project command with 

module (Adder) and role (C) arguments. Local protocols can simply be copied and 

pasted into appropriate files to be used by StMungo. 

StMungo deals with this recursive example by producing a labelled do-

while(true) loop in each main class: 

Figure 5.3 – do-while(true) loop in SMain.java 

The code combines the loop, labelled _X, with a switch that deals with the choice 

itself by inspecting the Choice1 enumeration returned by the method 

currentS.receive_Choice1LabelFromC(). Each case represents one of the 

enumerated choices, which are used to determine whether to return to the start of 

the loop using continue _X or terminate by break _X [5]. 

As with the rest of the examples, video recordings have been made 

demonstrating a full walkthrough of the toolchain usage; starting from validating 

and projecting Scribble global protocols to running StMungo on each local protocol 

and finally typechecking with Mungo and running the final programs. These 

videos can be found at the Mungo website [7] and on YouTube [8].  

 

 

 

 

 

 



15 

 

3.5 Challenges 

A number of challenges arose during this project that had to be overcome in order 

to successfully complete the portfolio of work. At the beginning of the project, I was 

completely unfamiliar with the concept of session types and typechecking, and was 

relatively new to socket programming and command line usage. I started by 

reviewing the existing literature on session types and the uses of typechecking in 

modern computing; I was glad to have the opportunity to work on such an exciting, 

thought-provoking field. Achieving an inclusive theoretical knowledge of the 

subject proved to be a steep learning curve which required significant time and 

effort.
 The original goal of the project was to use the Scribble-StMungo-Mungo 

toolchain to demonstrate how it can be used to typecheck a Domain Name System 

(DNS) client [27, 28, 29]. This was inspired by the Simple Mail Transfer Protocol 

(SMTP) example developed by Dr Ornela Dardha using the older version of the 

Mungo tool [4, 5] and demonstrated in a video on the Mungo website [7]. When I 

began work on the project, I was running Java version 10.0.2 and I had access to 

the older version of Mungo. I started out by trying to test-run it on the completed 

SMTP code, to gain a better understanding of the example in order to implement 

the DNS in a similar way. However, when I ran the old version of Mungo (which 

ran on .ses files) on the SMTP example, a number of errors were raised:  

Figure 6.1 – Errors produced by running old version of Mungo on SMTP with Java 10 



16 

 

I had already cloned the new Mungo (version 1.1) so I was advised to try out this 

version. I started out with a simple test example similar to the one described in 

Chapter 2. I was able to successfully run StMungo 1.1 on the local protocols using 

Java 10, but when I proceeded to typecheck the resulting Java files using the new 

Mungo, several different errors were raised: 

Figure 6.2 – Errors produced by running new version of Mungo with Java 10 

 



17 

 

The errors shown in Figures 6.1 and 6.2 were caused by the two different versions 

of the tools–touched on in Chapter 2–and their compatibility with Java versions. 

This caused confusion as I did not initially know the two versions ran on different 

versions of Java. I was advised to try out the old version using Java 1.4 and the 

new version using Java 1.8. I had to install both of these Java versions and 

research on how to change between them. While I was not able to run the old 

Mungo, I was eventually able to run the new Mungo (version 1.1) when I had 

installed and switched to Java version 1.8.0_211 by changing the Path 

environment variable to point to the JDK for Java 1.8. This proved difficult in itself 

as I did not have previous experience in doing this.

The DNS example originally intended for the project proved to be too 

complicated due to the errors produced and time taken trying to run the old Mungo 

version. In order to complete a useful, practical example within the given 

timeframe, the focus of the project shifted to using the new version of Mungo to 

implement an introduction to the toolchain with video demonstrations similar to 

the SMTP example at [7]. Once the new goal of the project was established, I began 

work on the portfolio examples. I encountered a few issues with the code produced 

by StMungo, based on the global and local protocols. For example, the travel-

agent_Finance.scr file had the following lines: 

approve(Code) to Researcher, Agent 

invoice(Price, Code) from Agent 

 

The Code and Price payload types represented ints in Java. Initially I had 

created separate classes for these, but for simplicity I changed the types to int in 

the global protocol and re-ran Scribble endpoint projection. The commas in each 

line caused StMungo to produce method names that included commas in the Java 

classes and typestate specifications. These caused syntax errors when compiling, 

and caused typestate violations if the commas were removed from the method 

names. I simply removed the commas and put each statement on a separate line 

in the global protocol, which resolved the issue. 

There were several more challenges, both related to the tools and related to 

my relative inexperience with programming in general.  I found that the Scribble 

shell script would not run on the Git Bash terminal that I originally used. I 

downloaded and switched to the Cygwin64 Terminal which allowed me to run the 

script. I was new to socket programming in Java when the project began, so it took 

effort to figure out how to configure the port numbers to achieve multiparty 

communication. I am also fairly new to command line use, especially adding 

classpaths when compiling and running scripts. Finally, video recording, editing 

and uploading to YouTube is a new – and enjoyable – challenge for me. This project 

presented a variety of steep learning curves, giving me the opportunity to study an 

exciting new concept in-depth and learn useful skills, related both to the field of 

typestate checking and to more general programming knowledge. I was very glad 

to work on these skills and gain some experience which I believe will be extremely 

valuable in my future career. 

 

 

 

 



18 

 

Chapter 4 Related and Future Work 
 

The portfolio completed in this project provides simple introductory examples to 

the Scribble-StMungo-Mungo toolchain. In-depth examples modelling substantial 

real-world protocols like the Simple Mail Transfer Protocol (SMTP) by Kouzapas 

et al [4, 5] and Post Office Protocol v.3 (POP3) by Dardha et al [1] have already 

been implemented. The Mungo website [7] contains a video walkthrough of the 

SMTP example—recorded by Dr Ornela Dardha—which was the inspiration for 

the videos created for this project. The SMTP and POP3 examples both involve 

clients sending and receiving messages from email servers. They follow the general 

workflow as described here in Chapter 3, but they generally require extra layers 

of implementation to work with a real server. The POP3 example in [1] states that 

some servers do not precisely adhere to the RFC specification, which can require 

workarounds during implementation. There is scope here for incorporating the 

Scribble language as standard into RFCs, thus encouraging the use of the full 

typechecking toolchain when implementing protocols. The authors concur, 

however, that this is currently not likely [1]. 

Future work could add to this project by including existing internet 

protocols that would show how the toolchain can be used to help develop a robust 

communication system. The Domain Name System would be a useful protocol to 

implement using the toolchain; this project was originally planned around it. 

However, as discussed above, the decision was made early on to focus on smaller 

examples, based on the challenges faced and the complexity and scale of the DNS 

protocol. The DNS, first described in RFC 882 [27] and extended in RFC 1034 [28] 

and RFC 1035 [29], is the system used to convert human-readable web addresses 

into IP addresses; it is a vital component of the functioning of the Internet. In 

essence, it defines the hierarchical structuring of the domain name space, 

describing the structured labels that compose web addresses. The top of this 

hierarchical tree starts at the least-specific root name (e.g. the rightmost dot in 

www.example.com.) and works down to the most-specific (e.g. the host name 

www). This information may be stored across several name servers, each of which 

holds information about certain subsets of the domain name space [28]. When a 

webpage is accessed, a DNS query is sent by the client to resolve the domain’s IP 

address from the appropriate name servers. Like the SMTP and POP3 examples 

described above, DNS queries therefore involve sequences of messages being sent 

between clients and servers [28], and so can be represented in the Scribble protocol 

language. Fowler [16] introduces a framework for monitoring multiparty session 

types in the actor-based language Erlang. The framework includes a Scribble 

global protocol specification of a DNS server, found at [30]. This could be used by 

Scribble to project to local endpoints, and kick-start the process described in 

section 3.1 to build a typechecked Java implementation of the DNS using StMungo 

and Mungo. 

 

 

  

http://www.example.com/


19 

 

Chapter 5 Conclusions 
 

This project presents a portfolio that adds to the Mungo website and the existing 

literature with an introductory teaching tool for the Scribble-StMungo-Mungo 

toolchain. The theory of session types is introduced in Chapter 2, describing its 

relevance as the formal foundation of the toolchain. The functioning of the tools 

is then described in detail: First, the Scribble language is used to represent 

structured communication protocols and project them to session channel 

endpoints. Then, StMungo takes these local endpoints and produces a Java-like 

typestate specification and a Java API for each one. Finally, after the code has 

been suitably altered to add business logic, the Mungo typechecking tool is run. 

Each example in the portfolio goes through this process, which has been fully 

documented in videos. The Travel Agent and Bookstore examples demonstrate 

multiparty communications, while the Adder example contributes by showing the 

use of recursion. As stated in the ABCD project’s introduction [13]:  

 

“Without a way to routinely and reliably build concurrent and distributed 

systems, a half century of unprecedented technical progress will draw to a close.” 

 

In the near future, this toolchain and similar session type tools will therefore 

almost certainly have to be incorporated as standard into a programmer’s 

skillset. This portfolio, along with the videos and information provided in this 

dissertation, can serve as a useful tool for anyone wishing to get a head-start in 

the field. 

  



20 

 

Bibliography 

[1] Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, Roly Perera, A. Laura 

Voinea and Florian Weber. Mungo and StMungo: Tools for Typechecking 

Protocols in Java. In Behavioural Types: from Theory to Tools, pages 309-328. 

River Publishers, 2017. 

 

[2] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The 

Scribble Protocol Language. In Trustworthy Global Computing ‘13, volume 8358 

of Lecture Notes in Computer Science, pages 22–41. Springer, 2013. 

[3] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types 

revisited. Information and Computation, vol. 256, pages 253-286, 2017. 

[4] Dimitrios Kouzapas, Ornela Dardha, Roly Perera and Simon J. Gay. 

Typechecking protocols with Mungo and StMungo: A session type toolchain for 

Java. Science of Computer Programming, vol. 155, pages 52-75, 2018. 

 

[5] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. 

Typechecking protocols with Mungo and StMungo. In Proceedings of the 18th 

International Symposium on Principles and Practice of Declarative Programming 

(PPDP), pages 146–159. ACM, 2016. 

 

[6] Robert E. Strom and Shaula Yemini. Typestate: A programming language 

concept for enhancing software reliability. IEEE Transactions on Software 

Engineering, vol. 12, no.1, pages 157–171, 1986. 

[7] Mungo homepage. University of Glasgow, 2019. 

http://www.dcs.gla.ac.uk/research/mungo/index.html.  [Accessed 

01/09/2019]. 

[8] Caitlin MacFadyen. Mungo Typechecking – Adder Example. YouTube, 2019. 

https://www.youtube.com/watch?v=Vdt1lgMmmIY. [Accessed 02/09/2019]. 

[9] Caitlin MacFadyen. Mungo Typechecking – Bookstore Example. YouTube, 

2019. https://www.youtube.com/watch?v=UvnsqT3w4Ck. [Accessed 

02/09/2019]. 

[10] Caitlin MacFadyen. Mungo Typechecking – Travel Agent Example. 

YouTube, 2019. https://www.youtube.com/watch?v=4N0s2dVIDMk. 

[Accessed 02/09/2019]. 

 

[11] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives 

and type discipline for structured communication-based programming. In 

Proceedings of the 7th European Symposium on Programming (ESOP), volume 

1381 of Lecture Notes in Computer Science, pages 122–138. Springer, 1998. 

 

[12] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based 

language and its typing system. In PARLE, volume 817 of Lecture Notes in 

Computer Science, pages 398–413. Springer, 1994. 

http://www.dcs.gla.ac.uk/research/mungo/index.html
https://www.youtube.com/watch?v=Vdt1lgMmmIY
https://www.youtube.com/watch?v=UvnsqT3w4Ck
https://www.youtube.com/watch?v=4N0s2dVIDMk


21 

 

[13] ABCD Project homepage. 2019. https://groups.inf.ed.ac.uk/abcd/ 

[Accessed 29/08/2019]. 

 

[14] Simon J. Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and 

Alexandre Z. Caldeira. Modular session types for distributed object-oriented 

programming. In Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium 

on Principles of Programming Languages (POPL), pages 299–312. ACM, 2010. 

 

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty 

asynchronous session types. In Proceedings of the 35th ACM SIGACT-SIGPLAN 

Symposium on Principles of Programming Languages (POPL), pages 273–284. 

ACM, 2008. 

 

[16] Simon Fowler. An Erlang Implementation of Multiparty Session Actors. 

Electronic Proceedings in Theoretical Computer Science, no. 223, pages 36-50, 

2016. 

 

[17] Web Services Choreography Working Group homepage. W3C, 2003. 

https://www.w3.org/2002/ws/chor/. [Accessed 23/08/2019]. 

 

[18] Scribble Language homepage. 2019. http://www.scribble.org/. 

[Accessed 29/08/2019]. 

 

[19] Scribble-Java Repository. GitHub, 2019. 

https://github.com/scribble/scribble-java. [Accessed 15/08/2019]. 

 

[20] Scribble-Java Tutorial webpage. 2019. 

http://www.scribble.org/docs/scribble-java.html#SCRIBSIG. 

[Accessed 01/09/2019]. 

[21] StMungo Repository. Bitbucket, 2017. https://bitbucket.org/abcd-

glasgow/stmungo/src/master/examples/travel-agent/ . [Accessed 

30/08/2019]. 

[22] Mungo Repository.  Bitbucket, 2017. https://bitbucket.org/abcd-

glasgow/mungo/src/master/. [Accessed 30/08/2019]. 

 

[23] Java SE Development Kit 8u221 Download webpage. 2019. 
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html?printOnly=1. [Accessed 04/07/2019]. 

 

[24] Cygwin64 Terminal (for Windows 64) Installation webpage. 2019. 

https://cygwin.com/install.html. [Accessed 30/07/2019]. 

 

[25] Flashback Express Recorder homepage. 2019. 

https://www.flashbackrecorder.com/express/. [Accessed 06/08/2019]. 

 

[26] OpenShot Video Editor homepage. 2019. https://www.openshot.org/. 

[Accessed 06/08/2019]. 

 

https://groups.inf.ed.ac.uk/abcd/
https://www.w3.org/2002/ws/chor/
http://www.scribble.org/
https://github.com/scribble/scribble-java
https://bitbucket.org/abcd-glasgow/stmungo/src/master/examples/travel-agent/
https://bitbucket.org/abcd-glasgow/stmungo/src/master/examples/travel-agent/
https://bitbucket.org/abcd-glasgow/mungo/src/master/
https://bitbucket.org/abcd-glasgow/mungo/src/master/
https://cygwin.com/install.html
https://www.flashbackrecorder.com/express/
https://www.openshot.org/


22 

 

[27] Paul Mockapetris. Domain Names – Concepts and Facilities, RFC 882. 

Internet Engineering Task Force, 1983. 

https://tools.ietf.org/html/rfc882. [Accessed 28/08/2019]. 

 

[28] Paul Mockapetris. Domain Names – Concepts and Facilities, RFC 1034. 

Internet Engineering Task Force, 1987. 

https://www.ietf.org/rfc/rfc1034.txt [Accessed 28/08/2019]. 

 

[29] Paul Mockapetris. Domain Names – Implementation and Specification, RFC 

1035. Internet Engineering Task Force, 1987. 

https://www.ietf.org/rfc/rfc1035.txt [Accessed 28/08/2019]. 

 

[30] Simon Fowler. Monitored Session Erlang. GitHub, 2015. 
https://github.com/SimonJF/monitored-session-

erlang/blob/master/mockups/DNSServer.scr. [Accessed 29/08/2019]. 

 

 

 

 

 

 

 

 

 

  

https://github.com/SimonJF/monitored-session-erlang/blob/master/mockups/DNSServer.scr
https://github.com/SimonJF/monitored-session-erlang/blob/master/mockups/DNSServer.scr


23 

 

Appendix A – Portfolio Setup Instructions 

The code for each of the portfolio examples has been provided in the submission. 

The examples can be run as follows: 

1. First, download and install Scribble-Java from [19], StMungo from [21] and 

Mungo from [22], following their setup instructions. 
2. Once the Scribble-Java project is set up, add the folder scribble-portfolio 

(containing Adder.scr, Bookstore.scr and BuyTicket.scr) into the same 

directory as the scribblec.sh file. A Cygwin terminal may need to be used 

on Windows to run the script. 
3. Validation (a) and endpoint projection (b) can be carried out with the 

following commands, in this case on the Adder example: 

 

a. $ ./scribblec.sh scribble-portfolio/Adder.scr  

b. $ ./scribblec.sh scribble-portfolio/Adder.scr -project Adder C 
 

4. Place the portfolio-examples folder in the StMungo main directory 

(where stmungo.jar should also be found after building the project) and run 

the following command, replacing Adder_C.scr with the appropriate local 

protocol: 

 

a. $ java -jar stmungo.jar portfolio-examples/adder/Adder_C.scr 
 

5. The portfolio folder contains fully-implemented code that can be 

typechecked by Mungo. The code can be compiled as follows:  

 

a. $ javac -cp bin/mungo.jar portfolio/Adder/*.java 
 

6. Place this folder in the main Mungo directory and run the following 

command for typechecking, replacing portfolio/adder/CMain.java with the 

filepath to any class that instantiates a role object: 
 

a. $ java -jar bin/mungo.jar portfolio/Adder/CMain.java 

 

7. Finally, the programs can be compiled and run on separate terminals if the 

Mungo typechecking is error-free. In order to properly establish the 

connections, the programs must be run in the following order: 

a. Travel Agent: RMain.java -> AMain.java -> FMain.java 

b. Bookstore: SellerMain.java -> Buyer2Main.java -> 
Buyer1Main.java 

c. Adder: CMain.java -> SMain.java 

 


